
Manuel utilisateur

Onduleur PV hybride

Table des matières

1.	Introduction	.1
2.	Avertissement de sécurité important	.2
3.	Déballage et vue d'ensemble	.4
	3-1. Liste de colisage	
	3-2. Présentation du produit	4
4.	Installation	.5
	4-1. Sélection de l'emplacement de montage	. 5
	4-2. Unité de montage	.5
5. F	Raccordement réseau (utilitaire)	7
	5-1. Préparation	.7
	5-2. Connexion à l'utilitaire AC	.7
6.	Connexion au module PV (DC)	.8
7.	Connexion batterie	10
8.	Connexion de la charge (sortie AC)	11
9.	Communication	12
10.	Mise en serviceConfiguration initiale	13
11.	Configuration initiale	14
12.	Fonctionnement	
	12-1. Interface	
	12-2. Description des informations de l'écran LCD	
	12-3. Description des boutons	
	12-4 Fonctionnement du menu de requête	
	12-5. Mode de fonctionnement et affichage	
13.	Gestion de la charge	39
	Applications avec Energy Meter	
	Entretien et nettoyage	
16.	Dépannage	
	16-1. Liste d'avertissement	
	16-2. Codes de référence des pannes	
17	Spácifications	40

1. Introduction

Cet onduleur photovoltaïque hybride peut alimenter les charges connectées en utilisant la puissance PV, l'alimentation électrique et la puissance de la batterie.

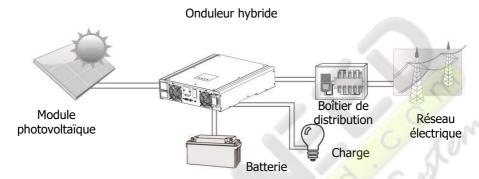


Figure 1 Vue d'ensemble du système PV hybride de base

En fonction de différentes situations de puissance, cet onduleur hybride est conçu pour générer de l'énergie continue à partir des modules solaires photovoltaïques (panneaux solaires), de la batterie et de l'utilité. Lorsque la tension d'entrée MPP des modules photovoltaïques est dans une plage acceptable (voir spécification pour les détails), cet onduleur peut générer de l'alimentation pour alimenter la grille (utilitaire) et la batterie de charge. Cet onduleur est uniquement compatible avec les types de modules photovoltaïques monocristallins et poly-cristallins. Ne connectez aucun type de réseau photovoltaïque autre que ces deux types de modules photovoltaïques à l'onduleur. Voir la figure 1 pour un schéma simple d'un système solaire typique avec cet onduleur hybride.

Remarque : Lorsque la tension d'entrée PV est inférieure à 250V pour le 3KW et 3KW plus et 150V pour 2KW, la puissance de l'entrée PV sera dégradée.

2. Avertissement de sécurité important

Avant d'utiliser l'onduleur, lisez toutes les instructions et les mises en garde sur l'appareil et ce manuel. Conservez le manuel dans un endroit facile d'accès.

Ce manuel s'adresse à un personnel qualifié. Les tâches décrites dans ce manuel peuvent être effectuées uniquement par un personnel qualifié.

Précaution générale -

Conventions utilisées:

ATTENTION! Les avertissements identifient les conditions ou les pratiques pouvant entraîner des blessures;

MISE EN GARDE! Attention, identifiez les conditions ou les pratiques qui pourraient endommager l'appareil ou tout autre équipement connecté.

ATTENTION! Avant d'installer et d'utiliser cet onduleur, lisez toutes les instructions et les mises en garde sur l'onduleur et toutes les sections appropriées de ce guide.

ATTENTION! Les conducteurs normalement mis à la terre peuvent avoir un dysfonctionnement et être alimentés lorsqu'un défaut à la terre est indiqué.

ATTENTION! Cet onduleur est lourd. Il devrait être levé par au moins deux personnes.

MISE EN GARDE! Le personnel de service autorisé devrait réduire le risque de choc électrique en débranchant l'alimentation AC, CC et la batterie de l'onduleur avant d'entreprendre une maintenance, un nettoyage ou un travail sur les circuits connectés à l'onduleur. L'extinction des contrôles ne réduira pas ce risque. Les condensateurs internes peuvent rester chargés pendant 5 minutes après avoir débranché toutes les sources d'alimentation.

MISE EN GARDE! Ne démontez pas cet onduleur vous-même. Il ne contient pas de pièces réparables par l'utilisateur. La tentative de réparation de cet onduleur vous-même risque de provoquer un choc électrique ou un incendie et annulera la garantie du fabricant.

MISE EN GARDE! Pour éviter tout risque d'incendie et de choc électrique, assurez-vous que le câblage existant est en bon état et que le fil n'est pas sous-dimensionné. Ne faites pas fonctionner l'onduleur avec un câblage endommagé ou défectueux.

MISE EN GARDE! Dans un environnement à haute température, la couverture de cet onduleur pourrait être suffisamment chaude pour provoquer des brûlures à la peau si elle est accidentellement touchée. Assurez-vous que cet onduleur est éloigné des zones de circulation normales.

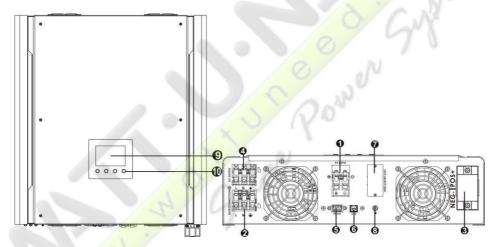
MISE EN GARDE! Utilisez uniquement les accessoires recommandés depuis l'installateur. Sinon, les outils non qualifiés peuvent entraîner un risque d'incendie, d'électrocution ou de blessures.

MISE EN GARDE! Pour réduire les risques et les risques d'incendie, ne pas couvrir ou obstruer le ventilateur.

MISE EN GARDE! Ne faites pas fonctionner l'onduleur s'il a reçu un coup brusque, a chuté ou été endommagé de quelque manière que ce soit. Si l'onduleur est endommagé, il faut appeler un RMA (Return Material Authorization - Autorisation de Retour de Matériel).

Symboles utilisés dans les marques d'équipement

Ţį.	Reportez-vous au mode d'emploi	
<u>^</u> !\	Attention, risque de danger	
A	Attention, risque d'électrocution	
<u>A</u> ()	Attention, risque de choc électrique, déchargement programmé de stockage d'énergie	
<u>ss</u>	Attention surface chaude	


3. Déballage et vue d'ensemble

3-1. Liste de colisage

Avant l'installation, inspectez l'unité. Assurez-vous que rien dans l'emballage ne soit endommagé. Vous devriez avoir reçu les éléments suivants à l'intérieur du colis:

3-2. Présentation du produit

- 1) Connecteurs PV
- 2) Connecteurs réseau
- 3) Connecteurs batterie
- 4) Connecteurs de sortie CA (connexion de charge)
- 5) Port de communication RS-232
- 6) Port de communication USB
- 7) Emplacement intelligent
- 8) Mise à la terre
- 9) Panneau d'affichage LCD (Veuillez vérifier la section 10 pour plus de détails)
- 10) Boutons d'opération

4. Installation

4-1. Sélection de l'emplacement de montage

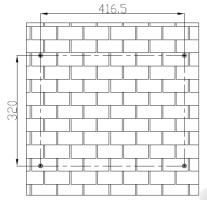
Considérez les points suivants avant de choisir l'endroit où installer:

- Ne montez pas l'onduleur sur des matériaux de construction inflammables.
- Montez l'appareil sur une surface solide
- Cet onduleur peut faire des bruits pendant le fonctionnement, ce qui peut être perçu comme une nuisance dans un espace de vie.
- Installez cet onduleur au niveau des yeux afin de pouvoir lire l'écran LCD en tout temps.
- Pour une circulation d'air appropriée pour dissiper la chaleur, autoriser un dégagement d'env. 20 cm sur le côté et env. 50 cm au-dessus et au-dessous de l'unité.
- Les conditions poussiéreuses de l'appareil peuvent compromettre les performances de cet onduleur.
- La température ambiante doit être comprise entre 0 ° C et 40 ° C et l'humidité relative doit être comprise entre 5% et 85% pour assurer un fonctionnement optimal.
- La position d'installation recommandée doit être respectée (verticale).
- Pour un fonctionnement correct de cet onduleur, utilisez les câbles appropriés pour la connexion au réseau.
- Le degré de pollution de l'onduleur est PD2. Sélectionnez un emplacement de montage approprié. Installez l'onduleur solaire dans une zone protégée sèche, exempte de poussière excessive et a un débit d'air adéquat. NE PAS le faire fonctionner lorsque la température et l'humidité dépassent les limites spécifiques. (Veuillez vérifier les spécifications pour les limitations.)
- La position d'installation ne doit pas empêcher l'accès aux moyens de déconnexion.
- Cet onduleur est concu avec IP20 pour les applications intérieures uniquement.
- Nettoyez régulièrement le filtre du ventilateur.

4-2. Unité de montage

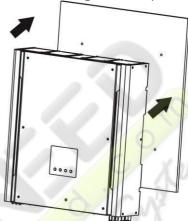
ATTENTION!! Rappelez-vous que cet onduleur est lourd! Soyez prudent lorsque vous sortez du colis.

L'installation sur le mur doit être réalisée avec les vis appropriées. Ensuite, l'appareil doit être verrouillé en toute sécurité.


L'onduleur ne peut être utilisé que dans une zone de fonctionnement électrique FERMEE.

ATTENTION!! RISQUE D'INCENDIE.

APPROPRIÉ POUR LE MONTAGE SUR UN BÉTON OU UNE AUTRE SURFACE NON COMBUSTIBLE SEULEMENT.


1. Percez quatre trous dans les endroits marqués avec des vis

3. Vérifiez si l'onduleur solaire est bien fixé

2. Placez l'unité sur la surface et alignez les trous de montage avec les quatre vis.

REMARQUE: Spécifications recommandées pour les vis.

5. Raccordement réseau (utilitaire)

5-1. Préparation

Avant de vous connecter à l'utilitaire AC, installez un disjoncteur secteur **séparé** entre l'onduleur et l'utilitaire AC. Cela garantira que l'onduleur peut être débranché en toute sécurité pendant la maintenance et entièrement protégé du courant excessif d'entrée CA.

NOTE1: Bien que cet onduleur soit équipé d'un fusible 250VAC / 30A, il est toujours nécessaire d'installer un disjoncteur séparé pour une attention particulière. Utilisez le disjoncteur 250VAC / 30A entre l'onduleur et l'utilitaire AC.

NOTE2: La catégorie de surtension de l'entrée AC est III. Il devrait être connecté à la distribution d'alimentation.

ATTENTION! Il est très important pour la sécurité du système et un fonctionnement efficace d'utiliser un câble approprié pour la connexion à le réseau (utilitaire). Pour réduire les risques de blessures, utilisez la taille de câble recommandée comme indiqué ci-dessous. Besoin de câble suggéré pour le fil AC.

Modèle	2KW	3KW	3KW Plus
Tension nominale du réseau	101/110/120/12 <mark>7 VAC</mark>	208/220/	230/240 VAC
Section du conducteur (mm²)	4~6		
AWG no.	10~12		

5-2. Connexion à l'utilitaire AC

Étape 1: Vérifiez la tension et la fréquence du réseau avec un voltmètre AC. Il devrait être identique à la valeur «VAC» sur l'étiquette du produit.

Étape 2: éteignez le disjoncteur.

Étape 3: enlever le manchon d'isolation 8 mm pour trois conducteurs. Et raccourcir la phase L et le conducteur neutre N 3 mm. Reportez-vous au graphique 1.

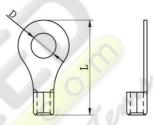
Graphique 1

Étape 4: Raccorder les fils selon les polarités indiquées sur le bornier. Assurez-vous de bien connecter le conducteur de protection PE (**)

L→LINE (brun ou noir)

→TERRE (jaune-vert)
N→Neutre (bleu)

Étape 5: Assurez-vous que les fils sont bien connectés. Le couple de serrage de référence est de 0,82 N.m.


Graphique

Étape 6: Pour un fonctionnement sûr, utilisez un fil de plus avec le terminal en anneau pour connecter la mise à la terre. Reportez-vous au graphique 3.

Terminal rond:

Taille recommandée du fil et de la borne:

	Anneau terminal			
Taille de câble		Dimensions		Valeur de couple
	Câble mm ²	D (mm)	L (mm)	couple
10 AWG	6	4.3	21.8	1.2~ 2 Nm

ATTENTION : Pour éviter tout risque de choc électrique, assurez-vous que le fil de terre est correctement mis à la terre avant d'utiliser cet onduleur hybride, peu importe si le réseau est connecté ou non.

6. Connexion au module PV (DC)

ATTENTION: NE PAS connecter la batterie ou la source DC aux connecteurs PV. Sinon, cela causera des dommages aux onduleurs.

ATTENTION : Avant de vous connecter aux modules photovoltaïques, installez **séparément** un disjoncteur CC entre onduleur et modules photovoltaïques.

NOTE1: utilisez un disjoncteur 600VDC / 20A pour 3KW, 600VDC / 25A pour 3KW Plus; 500VDC / 25A pour 2KW.

NOTE2: La catégorie de surtension de l'entrée PV est II.

Suivez les étapes ci-dessous pour implémenter la connexion du module PV:

AVERTISSEMENT: Étant donné que cet onduleur n'est pas isolé, seuls trois types de modules photovoltaïques sont acceptables: monocristallins et poly-cristallins uniquement en classe A-reated et CIGS. Pour éviter tout dysfonctionnement, ne connectez aucun module PV avec possibilité de courant de fuite sur l'onduleur. Par exemple, les modules photovoltaïques mis à la terre entraîneront un courant de fuite sur l'onduleur. Lorsque vous utilisez les modules CIGS, assurez-vous de ne pas être mis à la terre.

ATTENTION: Il est requis d'avoir une boîte de jonction PV avec protection contre les surtensions. Sinon, cela entraînera une dégradation de l'onduleur lors de l'éclairement sur les modules photovoltaïques.

Étape 1: Vérifiez la tension d'entrée des modules de réseau photovoltaïque. La tension d'entrée acceptable de l'onduleur solaire est 250VDC - 450VDC pour 3KW / 3KW Plus et 150VDC-320VDC pour 2KW. Ce système n'est appliqué qu'avec une chaîne de réseaux photovoltaïques. Assurez-vous que la charge maximale du connecteur d'entrée PV est de 13A pour 3KW, 18A pour 3KW Plus et 15A pour 2KW.

+ 000

ATTENTION : dépasser la tension d'entrée maximale peut détruire l'appareil !! Vérifiez le système avant la connexion du fil.

Étape 2: débranchez le disjoncteur.

Étape 3: enlever le manchon d'isolation 10 mm pour les conducteurs positifs et négatifs. Reportez-vous au tableau 4.

Étape 4: Vérifiez la polarité correcte du câble de connexion des modules PV et des connecteurs d'entrée PV. Ensuite, connectez le pôle positif (+) du câble de connexion au pôle positif (+) du connecteur d'entrée PV. Connectez le pôle négatif (-) du câble de connexion au pôle négatif (-) du connecteur d'entrée PV. Reportez-vous au graphique 5.

Étape 5: Assurez-vous que les fils sont bien connectés. Le couple de serrage de référence est de 1,22 N.m.

Graphique 4

Graphique 5

ATTENTION! Il est très important pour la sécurité du système et un fonctionnement efficace pour utiliser un câble approprié pour la connexion du module PV. Pour réduire les risques de blessures, utilisez la taille de câble recommandée comme indiqué ci-dessous.

Section du conducteur (mm²)	AWG no.
4~6	10 ~ 12

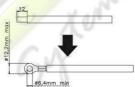
ATTENTION: Ne touchez **JAMAIS** directement les bornes de l'onduleur. Cela causera un choc électrique létal.

ATTENTION: NE PAS toucher l'onduleur pour éviter les chocs électriques. Lorsque les modules photovoltaïques sont exposés à la lumière du soleil, ils peuvent générer une tension continue sur l'onduleur.

7. Connexion batterie

ATTENTION: Avant de vous connecter aux batteries, installez séparément un disjoncteur CC entre l'onduleur et les batteries.

REMARQUE: utilisez uniquement une batterie scellée au plomb, une ventilation et une batterie Gel. Vérifiez la tension et le courant de charge maximum lors de la première utilisation de cet onduleur. Si vous utilisez une batterie au lithium ou à Nicd, veuillez consulter l'installateur pour les détails.

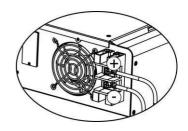

REMARQUE: Utilisez un disjoncteur 60VDC / 100A pour un disjoncteur de 3KW / 3KW Plus et 60VDC / 80A pour 2KW.

Suivez les étapes ci-dessous pour implémenter la connexion de la batterie:

Étape 1: Vérifiez la tension nominale des piles. La tension d'entrée nominale pour l'onduleur hybride est de 48 VCC.

Étape 2: utilisez deux câbles de batterie. Enlevez le manchon d'isolation 12 mm et insérez le conducteur dans la borne de l'anneau de câble. Reportez-vous au graphique 6.

Étape 3: Suivez le guide de polarité de la batterie imprimé près du terminal de la batterie! Placez la borne d'anneau de câble de batterie externe sur la borne de batterie. Reportez-vous au graphique 7.



Graphique 6

Câble ROUGE à la borne positive (+); Câble NOIR sur le terminal négatif (-).

Étape 4: Assurez-vous que les fils soient bien connectés. Le couple de serrage de référence est de 2,04 N.m.

ATTENTION! Il est très important pour la sécurité du système et le fonctionnement efficace d'utiliser un câble approprié pour la connexion de la batterie. Pour réduire les risques de blessures, utilisez la taille de câble recommandée comme indiqué ci-dessous.

Graphique 7

Modèle	2KW	3KW,3KW Plus
Tension nominale de la grille	101/110/120/127 VAC	208/220/230/240 VAC
Section du conducteur (mm²)	8	14
AWG no.	8	6

8. Connexion de la charge (sortie CA)

ATTENTION : pour éviter d'alimenter davantage la charge via l'onduleur pendant tout mode de fonctionnement, un dispositif de déconnexion supplémentaire doit être placé dans l'installation de câblage du bâtiment.

ATTENTION! Il est très important pour la sécurité du système et le fonctionnement efficace d'utiliser un câble approprié pour le raccordement AC. Pour réduire les risques de blessures, utilisez la taille de câble recommandée comme indiqué ci-dessous.

Modèle	2KW,	3KW	3KW Plus
Tension nominale du réseau	101/110/120/127 VAC	208/220/3	230/2 <mark>40 VAC</mark>
Section du conducteur (mm²)	4	~ 6	
AWG no.	10	~ 12	

Étape 1: Retirer le manchon d'isolation 8 mm pour trois conducteurs. Et raccourcir la phase L et le conducteur neutre N 3 mm. Reportez-vous au graphique 8.

Étape 2: raccorder les fils selon les polarités indiquées sur le bornier. Assurez-vous de bien connecter le conducteur de protection P=+(). Reportez-vous au graphique 9.

L → LINE (brun ou noir)

→ Terre (jaune-vert)

N → Neutre (bleu)

Graphique 8

Graphique 9

Étape 3: Assurez-vous que les fils soient bien connectés. Le couple de serrage de référence est de 0,82 N.m.

ATTENTION : il est seulement autorisé à connecter la charge à "Connecteur de sortie CA". NE PAS connecter le réseau au "Connecteur de sortie AC".

ATTENTION: assurez-vous de connecter la borne L de la charge à la borne L du «connecteur de sortie AC» et la borne N de la charge à la borne N du «connecteur de sortie AC». La borne G du «connecteur de sortie AC» est connectée à la mise à la terre de la charge. Ne pas mal connecter.

9. Communication

L'onduleur est équipé de ports RS232 et USB et il est également équipé d'un emplacement pour des interfaces de communication alternatives afin de communiquer avec un PC avec un logiciel correspondant. Cette fente intelligente convient à l'installation avec carte SNMP et carte Modbus. Suivez la procédure ci-dessous pour connecter le câblage de communication et installer le logiciel.

Pour le port RS232, vous devez utiliser un câble DB9 comme suit:

Pour le port USB, vous devez utiliser un câble USB comme suit:

Pour la carte SNMP ou MODBUS, vous devez utiliser les câbles RJ45 comme suit:

Installez un logiciel de surveillance sur votre ordinateur. Des informations détaillées sont répertoriées dans le chapitre suivant. Une fois le logiciel installé, vous pouvez initialiser le logiciel de surveillance et extraire des données via un port de communication.

10. Mise en service

Étape 1: Vérifiez les conditions suivantes avant la mise en service:

- Assurez-vous que l'onduleur soit solidement fixé
- Vérifiez si la tension continue du circuit ouvert du module PV répond à l'exigence (reportez-vous à la section 6)
- Vérifiez si la tension de l'alimentation en circuit ouvert du réseau est approximativement égale à la valeur nominale attendue de l'entreprise de services publics locale.
- Vérifiez si la connexion du câble AC au réseau est correcte si le réseau est nécessaire.
- Connexion complète aux modules photovoltaïques.
- Le disjoncteur CA (appliqué uniquement lorsque le réseau est requis), le disjoncteur de batterie et le disjoncteur à courant continu sont installés correctement.

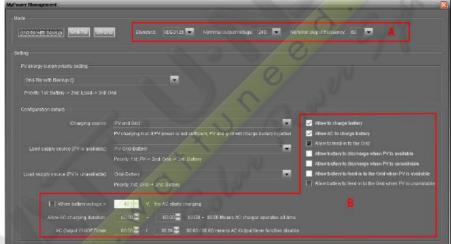
Étape 2: Allumez le disjoncteur de la batterie, puis allumez le disjoncteur PV DC. Après cela, s'il y a une connexion au réseau, allumez le disjoncteur AC. A ce moment, l'onduleur est déjà allumé. Cependant, il n'y a pas de génération de sortie pour les charges. Alors:

- Si l'écran LCD s'allume pour afficher l'état actuel de l'onduleur, la mise en service a été effectuée avec succès. Après avoir appuyé sur le bouton "ON" pendant 1 seconde lorsque le réseau est détecté, cet onduleur commencera à alimenter les charges. Si aucun réseau n'existe, appuyez simplement sur le bouton "ON" pendant 3 secondes. Ensuite, cet onduleur commencera à alimenter les charges.
- Si la LED rouge s'allume, ou l'indicateur d'avertissement / défaut apparaît sur l'écran LCD, une erreur est survenue sur cet onduleur. Veuillez informer votre installateur.

Étape 3: insérez le CD dans votre ordinateur et installez un logiciel de surveillance sur votre PC. Suivez les étapes ci-dessous pour installer le logiciel.

- 1. Suivez les instructions à l'écran pour installer le logiciel.
- 2. Lorsque votre ordinateur redémarre, le logiciel de surveillance apparaîtra comme une icône de raccourci située dans la barre d'état système, près de l'horloge.

REMARQUE: Si vous utilisez la carte modbus comme interface de communication, s'il vous plaît installer un autre logiciel fourni. Consultez le détaillant local pour obtenir les détails.



11. Configuration initiale

Avant le fonctionnement de l'onduleur, il est nécessaire de mettre en place « Mode de fonctionnement » via le logiciel. Suivez strictement les étapes ci-dessous pour configurer. Pour plus de détails, vérifiez le manuel du logiciel.

- Étape 1: Après avoir allumé l'onduleur et installé le logiciel, cliquez sur "Ouvrir le moniteur" pour accéder à l'écran principal de ce logiciel.
- Étape 2: Connectez-vous au logiciel d'abord en saisissant le mot de passe par défaut "administrator".
- Étape 3: Sélectionnez Contrôle de périphérique >> Gestion de MyPower. C'est pour configurer le mode de fonctionnement de l'onduleur et une interface personnalisée. Reportez-vous au schéma ci-dessous.

Mode

Il existe trois modes de fonctionnement: Grid-tie avec back-up, Grid-Tie et Off-Grid.


- Grid-tie avec back-up: l'alimentation photovoltaïque peut alimenter le réseau, alimenter la charge et charger la batterie. Il existe quatre options disponibles dans ce mode: Grid-tie avec back-up I, II, III, IV et V. <u>Dans ce mode, les utilisateurs peuvent configurer la priorité de la source d'alimentation PV, la priorité de la source de charge et la priorité de la source d'alimentation.</u> Cependant, lorsque l'option Grid-tie with backup IV est sélectionnée en priorité d'alimentation en énergie photovoltaïque, l'onduleur ne fonctionne qu'entre deux logiques de travail en fonction du temps de pointe défini et de l'heure de pointe de l'électricité. Seul le temps de pointe et heures creuses de l'électricité sont en mesure de mettre en place pour la consommation d'électricité optimisée.
- Grid-Tie: l'énergie photovoltaïque ne peut être transmise qu'au réseau
- Off-Grid: l'alimentation PV ne fournit que la charge et charge la batterie. Aucun retour d'alimentation vers le réseau n'est autorisé.

SECTION A:

Standard: il répertorie la norme du réseau local. Il est demandé d'avoir un mot de passe d'usine pour apporter des modifications. Veuillez vérifier le concessionnaire local uniquement lorsque ce changement standard est demandé.

ATTENTION: Un mauvais réglage pourrait provoquer un endommagement de l'appareil ou ne pas fonctionner.

Tension de sortie nominale: il existe 5 options pour le système à haute tension, 240V, 230V, 220V, 208V et 202V. Pour le système à basse tension, il existe quatre options: 127, 120, 110 et 101.

Fréquence de sortie nominale: il existe deux options à sélectionner, 50HZ ou 60HZ.

SECTION B:

Fréquence de sortie nominale: il existe deux options à sélectionner, 50HZ ou 60HZ.

Lorsque la tension de la batterie est <xx.x V. l'AC commence à charger: Lorsqu'elle est sélectionnée, après que la tension de la batterie est inférieure au réglage (xx.x V), AC va commencer à charger la batterie. Lorsque cette condition est sélectionnée, il est permis d'entrer la tension de réglage. Sinon, il est impossible d'entrer des valeurs.

Autoriser la durée de charge AC: Il est une période de temps pour permettre de charger la batterie AC (grille). Lorsque la durée est configurée comme 0: 00-00: 00, cela signifie qu'il n'y a pas de limitation de temps pour AC pour charger la batterie.

Temporisation marche / arrêt de la sortie ca: régler le temps d'activation / désactivation de la sortie CA du variateur. Si vous le définissez comme 00: 00/00: 00, cette fonction est désactivée.

Permet de charger la batterie: cette option est automatiquement déterminée en configurant "Charging source". Il n'est pas permis de modifier ici. Lorsque "NONE" est sélectionné dans la section source de charge, cette option devient non vérifiée en tant que texte gris.

Permet à AC de charger la batterie: cette option est automatiquement déterminée en configurant "Charging source". Il n'est pas permis de modifier ici. Lorsque "Réseau et PV" ou "Réseau ou PV" est sélectionné dans la section source de charge, cette option est sélectionnée par défaut. Sous le mode Grid-Tie, cette option n'est pas valide.


Permet de se connecter au réseau: cette option est uniquement valide sous Grid-tie et Grid-tie avec les modes de back-up. Les utilisateurs peuvent décider si cet onduleur peut se connecter au réseau.

Permettre à la batterie de se décharger lorsque la PV est disponible: cette option est automatiquement déterminée par le réglage dans "La source d'alimentation de charge (PV est disponible)". Lorsque "Battery" est une priorité supérieure à "Grid" dans la source d'alimentation de charge (PV est disponible), cette option est sélectionnée par défaut. Sous Grid-tie, cette option n'est pas valide.

Permettre à la batterie de se décharger lorsque la PV est indisponible: cette option est automatiquement déterminée par le réglage dans "La source d'alimentation de charge (PV n'est pas disponible)". Lorsque "Battery" est une priorité supérieure à "Grid" dans la source d'alimentation de charge (PV n'est pas disponible), cette option est sélectionnée par défaut. Sous le mode Grid-Tie, cette option n'est pas valide.

Permettre à la batterie de se connecter à la grille lorsque la PV est disponible: cette option n'est valable que dans Grid-Tie avec back-up II ou Grid-Tie avec back-up III. Permettre à la batterie de se connecter à la grille lorsque le PV n'est pas disponible: cette option n'est valable que dans toutes les options de Grid-Tie avec back-up.

Grid-tie avec backup

Réglage de la priorité de l'alimentation en énergie photovoltaïque: 1ère batterie, 2ème charge et 3ème réseau.

L'alimentation PV chargera la batterie en premier, puis fournira de l'énergie à la charge. S'il reste encore de l'énergie restante, cela retournera au réseau.

Source de charge de la batterie:

1. PV et Réseau (par défaut)

Il est possible de recharger la batterie avec la puissance PV. Si ce n'est pas suffisant, le réseau chargera la batterie.

2. PV uniquement

Il ne permet que la puissance pour charger la batterie.

3. Aucun

Il n'est pas autorisé de charger la batterie, peu importe le fait qu'elle provient de l'alimentation PV ou du réseau.

Source d'alimentation:

Lorsque l'énergie PV est disponible: 1ère PV, 2ème réseau, 3ème batterie Si la batterie n'est pas complètement chargée, l'alimentation PV recharge la batterie en premier. Et la puissance PV restante fournira de l'énergie à la charge. Si ce n'est pas suffisant, le réseau fournira de l'énergie à la charge. Si le réseau n'est pas disponible en même temps, la batterie sera sauvegardée.

Lorsque l'alimentation PV n'est pas disponible:

1. 1er réseau, 2ème batterie (par défaut)

Le réseau fournira d'abord la puissance à la charge. Si le réseau n'est pas disponible, l'alimentation de la batterie fournira une sauvegarde d'alimentation.


2. 1ère batterie, 2ème réseau

La puissance de la batterie fournira d'abord la puissance à la charge. Si la batterie est épuisée, le réseau sauvegarde la charge.

REMARQUE : Cette option deviendra inefficace pendant le temps de charge de l'AC et la priorité deviendra automatiquement la première commande du réseau et de la 2ème batterie. Sinon, cela causera des dommages à la batterie.

Grid-tie avec backup (II) :

Réglage de la priorité d'alimentation en énergie PV: 1ère charge, 2ème batterie et 3ème réseau. L'alimentation PV fournira d'abord la puissance à la charge. Ensuite, il va charger la batterie. S'il reste encore de l'énergie restante, l'énergie sera remise au réseau. Source de charge de la batterie:

PV et réseau

Il est possible de recharger d'abord la batterie de la puissance PV. Si ce n'est pas suffisant, la grille chargera la batterie.

PV seulement

Il ne permet que la puissance PV pour charger la batterie.

Aucun

Il n'est pas permis de charger la batterie, peu importe la puissance PV ou du réseau. Source d'alimentation:

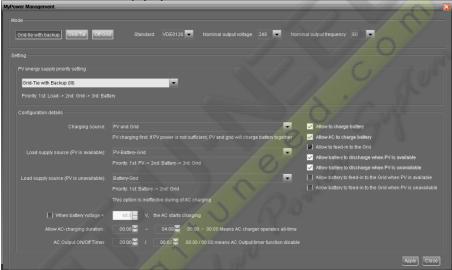
Lorsque l'alimentation PV est disponible:

1. 1er PV, 2ème batterie, 3ème réseau

L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, la puissance de la batterie fournira de l'énergie à la charge. Lorsque la batterie est épuisée ou non disponible, le réseau sauvegardera la charge.

2. 1er PV, 2ème réseau, 3ème batterie

L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, le réseau fournira de l'énergie à la charge. Si le réseau n'est pas disponible en même temps, la batterie sauvegardera la charge.


Lorsque l'alimentation PV n'est pas disponible:

- 1. 1er réseau, 2ème batterie: le réseau fournira d'abord la puissance à la charge. Si le réseau n'est pas disponible. l'alimentation de la batterie fournira une sauvegarde d'alimentation.
- 2. 1ère batterie, 2ème réseau: la puissance de la batterie fournira d'abord la puissance à la charge. Si la batterie est épuisée, le réseau sauvegarde la charge

REMARQUE: Cette option deviendra inefficace pendant le temps de charge de l'AC et la priorité deviendra automatiquement la première commande de la grille et de la 2ème batterie. Sinon, cela causera des dommages à la batterie.

Grid-tie avec backup (III):

Réglage de la priorité d'alimentation en énergie PV: 1ère charge, 2ème réseau et 3ème batterie L'alimentation PV fournira d'abord la puissance à la charge. S'il y a plus d'énergie photovoltaïque disponible, elle sera intégrée au réseau. Si la puissance d'alimentation atteint le niveau maximal d'alimentation en alimentation, la puissance restante chargera la batterie.

REMARQUE: le réglage de la puissance maximale de la grille d'alimentation est disponible en paramètre. Veuillez consulter le manuel du logiciel.

Source de charge de la batterie:

- 1. PV et réseau: il est permis de recharger d'abord la batterie de la puissance PV. Si ce n'est pas suffisant, le réseau chargera la batterie.
- 2. PV uniquement: il ne permet que l'alimentation PV pour charger la batterie.
- Aucun: il n'est pas autorisé à charger la batterie, peu importe sa puissance PV ou sa grille.

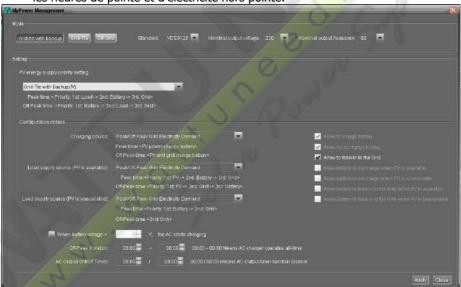
Source d'alimentation:

Lorsque l'alimentation PV est disponible:

1er PV, 2ème batterie, 3ème réseau

L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, la puissance de la batterie fournira de l'énergie à la charge. Lorsque la batterie est épuisée ou non disponible, le réseau sauvegardera la charge.

2. 1er PV, 2ème réseau, 3ème batterie


L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, le réseau fournira de l'énergie à la charge. Si le réseau n'est pas disponible en même temps, la batterie sauvegardera la charge.

Lorsque l'alimentation PV n'est pas disponible:

- 1ère grille, 2ème batterie: le réseau fournira d'abord la puissance à la charge. Si le réseau n'est pas disponible, l'alimentation de la batterie fournira une sauvegarde d'alimentation.
- 2. 1ère batterie, 2ème réseau: la puissance de la batterie fournira d'abord la puissance à la charge. Si la batterie est épuisée, le réseau sauvegarde la charge. REMARQUE: Cette option deviendra inefficace pendant le temps de charge de l'AC et la priorité deviendra automatiquement en premier le réseau et en 2ème batterie. Sinon, cela causera des dommages à la batterie.

Grid-tie avec backup (IV): Les utilisateurs ne sont autorisés à mettre en place que les heures de pointe et d'électricité hors pointe.

Logique de travail en période de pointe :

Priorité d'alimentation en énergie PV: 1ère charge, 2ème batterie et 3ème réseau

L'alimentation PV fournira d'abord la puissance à la charge. Si l'alimentation PV est suffisante, elle rechargera la batterie à côté. S'il reste de l'énergie PV, elle sera envoyée au réseau. Le renvoi vers le réseau est par défaut désactivé.

Source de charge de la batterie: PV seulement

Ce n'est qu'après que la puissance PV supporte entièrement la charge, la puissance PV restante est autorisée à charger la batterie pendant les heures de pointe.

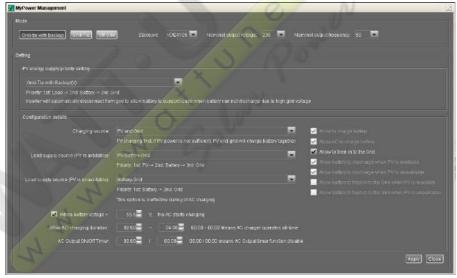
Source d'alimentation: 1er PV, 2ème batterie, 3ème grille

L'alimentation PV fournira d'abord la puissance à la charge. Si l'alimentation photovoltaïque n'est pas suffisante, la charge de la batterie sauvegarde la charge. Si l'alimentation de la batterie n'est pas disponible, le réseau fournira la charge. Lorsque l'alimentation photovoltaïque n'est pas disponible, l'alimentation de la batterie fournira la charge d'abord. Si la batterie est épuisée, le réseau sauvegarde la charge.

Logique de travail en période hors pointe :

Priorité d'alimentation en énergie PV: 1ère batterie, 2ème charge et 3ème réseau L'alimentation PV chargera la batterie en premier. Si la puissance PV est suffisante, elle alimentera les charges. La puissance PV restante sera renvoyée sur le réseau.

REMARQUE : le réglage de la puissance maximale qui retourne sur le réseau est disponible en paramètre. Veuillez consulter le manuel du logiciel.


Source de charge de la batterie: batterie PV et charge du réseau

L'alimentation photovoltaïque recharge la batterie en premier temps hors pointe. Si ce n'est pas suffisant, le réseau chargera la batterie.

Source d'alimentation: 1er PV, 2ème réseau, 3ème batterie

Lorsque la batterie est complètement chargée, la puissance PV restante alimentera d'abord la charge. Si la puissance PV n'est pas suffisante, le réseau sauvegardera la charge. Si l'alimentation du réseau n'est pas disponible, l'alimentation de la batterie fournira de l'énergie à la charge.

 Grid-tie avec backup (V): Dans ce mode, l'onduleur se déconnecte automatiquement du réseau pour permettre à la batterie de supporter des charges lorsque la batterie ne peut pas être déchargée en raison d'une tension de réseau élevée.

Réglage de la priorité d'alimentation en énergie PV: 1ère charge, 2ème batterie et 3ème réseau L'alimentation PV fournira d'abord la puissance à la charge. Si l'alimentation PV est suffisante, elle rechargera la batterie à côté. S'il reste de l'énergie PV, elle sera redirigée vers le réseau

Source de charge de la batterie:

- 1. PV et Réseau: il est permis de recharger d'abord la batterie de la puissance PV. Si ce n'est pas suffisant, le réseau chargera la batterie.
- 2. PV uniquement: il ne permet que l'alimentation PV pour charger la batterie.
- 3. Aucun: il n'est pas autorisé à charger la batterie, peu importe la puissance PV ou le réseau.

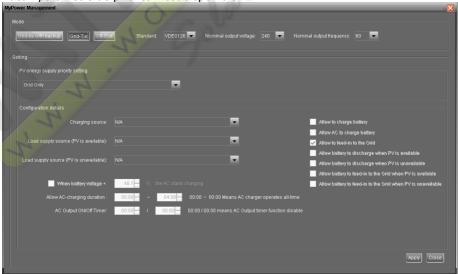
Source d'alimentation:

Lorsque l'alimentation PV est disponible:

1er PV, 2ème batterie, 3ème réseau

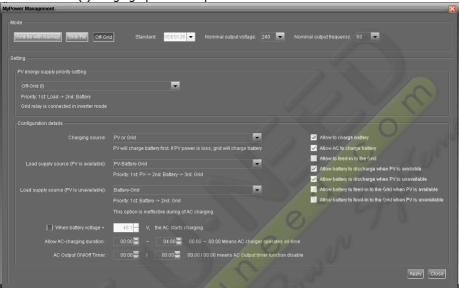
L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, la puissance de la batterie fournira de l'énergie à la charge. Lorsque la batterie est épuisée ou non disponible, le réseau sauvegardera la charge.

2. 1er PV, 2ème réseau, 3ème batterie


L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, le réseau fournira de l'énergie à la charge. Si le réseau n'est pas disponible en même temps, la batterie sauvegardera la charge.

Lorsque l'alimentation PV n'est pas disponible:

- 1er réseau, 2ème batterie: le réseau fournira d'abord la puissance à la charge. Si le réseau n'est pas disponible, l'alimentation de la batterie fournira une sauvegarde d'alimentation.
- 1ère batterie, 2ème réseau: la puissance de la batterie fournira d'abord la puissance à la charge. Si la batterie est épuisée, le réseau sauvegarde la charge REMARQUE: Cette option deviendra inefficace pendant le temps de charge de l'AC et la priorité deviendra automatiquement le réseau en premier et en 2ème la batterie.
 Sinon, cela causera des dommages à la batterie.


Grid-Tie

Sous ce mode d'opération, l'alimentation PV est renvoyée au réseau uniquement. Aucun paramètre de priorité n'est disponible.

Off-Grid

Off-Grid (I): Réglage par défaut pour le mode hors réseau.

Réglage de la priorité d'alimentation en énergie PV: 1ère charge, 2ème batterie L'alimentation PV fournira d'abord l'alimentation à la charge, puis chargera la batterie. L'introduction du réseau n'est pas autorisé dans ce mode. En même temps, le relais du réseau est connecté en mode Inverseur. Cela signifie que le temps de transfert du mode onduleur au mode batterie sera inférieur à 15 ms. En outre, il évitera un défaut de surcharge car le réseau peut fournir une charge lorsque la charge connectée dépasse 3KW.

Source de charge de la batterie:

- 1. PV ou réseau: s'il y a une puissance PV restante après avoir supporté les charges, il recharge la batterie en premier. Seulement jusqu'à ce que l'énergie PV ne soit pas disponible, le réseau chargera la batterie. (Par défaut)
- 2. PV uniquement: il ne permet que l'alimentation PV pour charger la batterie.
- 3. Aucun: il n'est pas autorisé à charger la batterie, peu importe la puissance PV oule réseau

Source d'alimentation:

Lorsque l'alimentation PV est disponible:

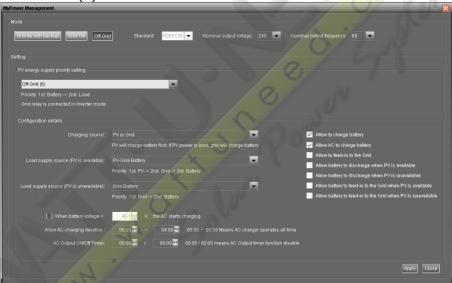
1. 1er PV, 2ème batterie, 3ème résau (par défaut)

L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, la puissance de la batterie fournira de l'énergie à la charge. Lorsque la batterie est épuisée ou non disponible, le réseau sauvegardera la charge.

2. 1er PV, 2ème réseau, 3ème batterie

L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, le réseau fournira de l'énergie à la charge. Si le réseau n'est pas disponible en même temps, la batterie sauvegardera la charge. Lorsque l'alimentation PV n'est pas disponible:

1. 1ère réseau, 2ème batterie


Le réseu fournira d'abord la puissance à la charge. Si le réseau n'est pas disponible, l'alimentation de la batterie fournira une sauvegarde d'alimentation.

2. 1ère batterie, 2ème réseau (par défaut)

La puissance de la batterie fournira d'abord la puissance à la charge. Si la batterie est épuisée, le réseau sauvegarde la charge.

REMARQUE : Cette option deviendra inefficace pendant le temps de charge de l'AC et la priorité deviendra automatiquement le réseau en premier et en 2ème la batterie. Sinon, cela causera des dommages à la batterie.

Off-Grid (II)

Réglage de la priorité de l'alimentation en énergie PV: 1ère batterie, 2ème charge L'alimentation PV chargera la batterie en premier. Une fois que la batterie est complètement chargée, s'il reste de l'énergie PV restante, elle alimentera la charge. L'introduction du réseau n'est pas autorisée dans ce mode. En même temps, le relais du réseau est connecté en mode Inverseur. Cela signifie que le temps de transfert du mode onduleur au mode batterie sera inférieur à 15 ms. En outre, il évitera un défaut de surcharge car le réseau peut fournir une charge lorsque la charge connectée dépasse 3KW.

Source de charge de la batterie:

- PV ou réseau : s'il y a une puissance PV restante après avoir supporté les charges, il recharge la batterie en premier. Seulement jusqu'à ce que l'énergie photovoltaïque ne soit pas disponible, le réseau chargera la batterie.
- 2. PV uniquement: il ne permet que l'alimentation PV pour charger la batterie.
- 3. Aucun: il n'est pas autorisé à charger la batterie, peu importe la puissance PV ou le réseau.

REMARQUE : il est possible de configurer la durée de charge de l'AC.

Source d'alimentation:

Lorsque l'énergie PV est disponible: 1ère PV, 2ème réseau, 3ème batterie

L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, le réseau fournira de l'énergie à la charge. Si le réseau n'est pas disponible en même temps, la batterie sauvegardera la charge.

Lorsque l'alimentation PV n'est pas disponible:

- 1ère réseau, 2ème batterie: le réseau fournira d'abord la puissance à la charge. Si le réseau n'est pas disponible, l'alimentation de la batterie fournira une sauvegarde d'alimentation.
- 2. 1ère batterie, 2ème réseau : la puissance de la batterie fournira d'abo<mark>rd la</mark> puissance à la charge. Si la batterie est épuisée, le réseau sauvegarde la charge. **REMARQUE** : Cette option deviendra inefficace pendant le temps de charge de l'AC et la priorité deviendra automatiquement la première commande de la grille et de la 2ème batterie. Sinon, cela causera des dommages à la batterie.

Off-Grid (III)

Mode

Ond-Steward Carbon Off-Grid Standard CEG128 Normal output voltage: 240 Normal output frequency: 60 Setting

PV energy supply priority setting

Off-Grid (III)

Priority 1 st Load - 2 nd. Battery

Grid relay is disconnected in inverter mode

Configuration details

Charging source: PV or Grid

PV-will charge battery first. If PV power is loss, grid will charge battery

Allow to charge battery

Allow to charge battery

Allow to charge battery

Allow battery to discharge when PV is available.

Load supply source (PV is available): Ord-Battery

Priority. 1st. FV -> 2nd. Battery

Priority. 1st. FV -> 2nd. Battery

Allow battery to discharge when PV is available.

Allow battery to discharge when PV is available.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Allow battery to feed-in to the Grid when PV is unavailable.

Réglage de la priorité d'alimentation en énergie PV: 1ère charge, 2ème batterie L'alimentation PV fournira d'abord l'alimentation à la charge, puis la charge de la batterie. L'introduction du réseau n'est pas autorisée dans ce mode. Le relais du réseau n'est PAS connecté en mode Onduleur. Cela signifie que le temps de transfert du mode onduleur au mode batterie sera inférieur à 15 ms.

Source de charge de la batterie:

- PV ou réseau: s'il y a une puissance PV restante après avoir supporté les charges, il recharge la batterie en premier. Seulement jusqu'à ce que l'énergie photovoltaïque ne soit pas disponible, le réseau chargera la batterie.
- 2. PV uniquement: il ne permet que l'alimentation PV pour charger la batterie.
- 3. Aucun: il n'est pas autorisé à charger la batterie, peu importe la puissance PV ou le réseau.

REMARQUE : il est possible de configurer la durée de charge de l'AC.

Source d'alimentation:

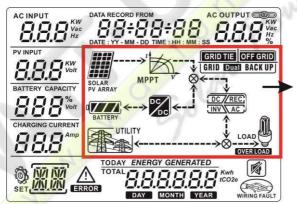
Lorsque l'énergie PV est disponible: 1ère PV, 2ème batterie, 3ème réseau L'alimentation PV fournira d'abord la puissance à la charge. Si ce n'est pas suffisant, l'alimentation de la batterie sauvegarde la charge. Ce n'est qu'après l'épuisement de la batterie et de l'arrêt de la charge que le réseau sauvegardera la charge. À ce moment, l'autonomie de la batterie est faible et l'alimentation photovoltaïque ne peut que charger la batterie lorsque la fonction «Charger la batterie» est activée. Ce n'est que lorsque la tension de la batterie est de retour au point de déchargement, l'alimentation PV alimentera de nouveau la charge.

Lorsque l'alimentation PV n'est pas disponible:

- 1ère réseau, 2ème batterie: le réseau fournira d'abord la puissance à la charge. Si le réseau n'est pas disponible, l'alimentation de la batterie fournira une sauvegarde d'alimentation.
- 2. 1ère batterie, 2ème réseau: la puissance de la batterie fournira d'abord la puissance à la charge. Si la batterie est épuisée, le réseau sauvegarde la charge.

REMARQUE: Cette option deviendra inefficace pendant le temps de charge de l'AC et la priorité deviendra automatiquement le réseau en premier et en 2ème la batterie. Sinon, cela causera des dommages à la batterie.

12. Fonctionnement


12-1. Interface

Cet affichage fonctionne avec quatre boutons.

AVIS: Pour surveiller et calculer avec précision la génération d'énergie, calibrez la minuterie de cette unité via un logiciel tous les mois. Pour l'étalonnage détaillé, vérifiez le mode d'emploi du logiciel.

12-2. Description des information sur l'écran LCD

Statut d'opération en temps réel

La section 12-5 décrit toutes les conditions de fonctionnement lorsque l'onduleur est configuré en mode "Grid-Tie avec back-up (I)".

Affichage	Fonction	
AC INPUT	Indique la tension ou la fréquence d'entrée CA. Vac:	
8.8.8	tension, Hz: fréquence	
8.8.8 %	Indique la puissance de sortie CA, la tension, la fréquence ou le pourcentage de charge. KW: puissance, Vac: tension, Hz: fréquence,%: pourcentage de charge	
PV INPUT	Indique la tension d'entrée PV ou la puissance.	
8.8.8 ***	Volt: tension, KW: puissance	

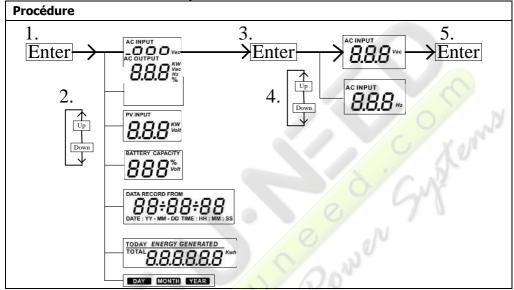
BATTERY CAPACITY	
888%	Indique la tension ou le pourcentage de la batterie. Volt: tension,%: pourcentage
CHARGING CURRENT 88.8	Indique le courant de charge à la batterie.
\triangle	Indique que l'avertissement se produit.
ERROR	Indique que la panne se produit.
(07) (07) (21) (21)	Indique le code d'erreur ou le code d'avertissement.
DATA RECORD FROM 88+88+88 DATE: YY-MM-DD TIME: HH; MM: SS	Indique la date et l'heure, ou la date et l'heure définies par les utilisateurs pour interroger la génération d'énergie.
SOLAR PV ARRAY	Indique les panneaux solaires. L'icône clignotante indique une tension d'entrée PV ou est hors de portée.
UTILITY	Indique le réseau. L'icône clignotant indique que la tension ou la fréquence du réseau est hors de portée.
DEATTERY	Indique l'état de la batterie. Et les diagonales dans l'icône indiquent la capacité de la batterie.
0 BATTERY	L'icône clignote indique que la batterie n'est pas connectée.
O A BATTERY	L'icône de la batterie est trop basse.
LOAD	Indique que la sortie CA pour les charges est activée et que l'onduleur fournit une alimentation électrique aux charges connectées.
	Indique la sortie AC pour des charges est activée, mais il n'y a pas de puissance fournie par l'onduleur. À l'heure actuelle, aucune batterie et réseau ne sont disponibles. Il n'existe qu'une alimentation PV, mais ne peut pas alimenter les charges connectées.
OVER LOAD	Indique une surcharge.
TODAY ENERGY GENERATED TOTAL DAY MONTH YEAR	Indique l'énergie photovoltaïque générée.

12-3. Définition des boutons

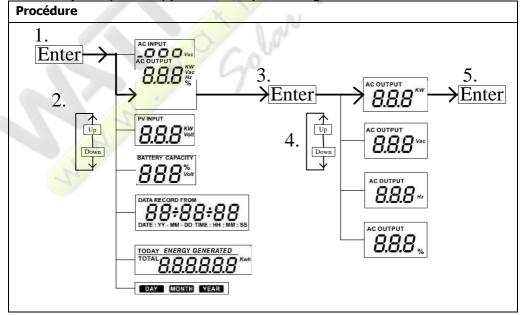
Bouton	Fonctionnement	Fonction
	Pression courte	Entre le menu de requête. Si c'est dans le menu de requête, appuyez sur ce bouton pour confirmer la sélection ou l'entrée.
ENTER/ON	Maintenez la touche enfoncée pendant environ 1 seconde lorsque le réseau est détecté ou 3 secondes sans le réseau	Cet onduleur peut alimenter les charges connectées via un connecteur de sortie AC.
ESC/OFF	Pression courte Appuyez sur le bouton et maintenez-le enfoncé jusqu'à ce que le buzzer sonne continuellement.	Retour au menu précédent. Éteignez l'alimentation des charges.
Haut	Pression courte	Sélectionnez la dernière sélection ou augmentez la valeur.
Pag	Decesion societa	Si c'est dans le menu de requête, appuyez sur cette touche pour passer à la prochaine sélection ou diminuer la valeur.
Bas	Pression courte	Alarme muette en mode veille ou en mode batterie.

REMARQUE: si le rétro-éclairage s'arrête, vous pouvez l'activer en appuyant sur n'importe quel bouton. Lorsqu'une erreur se produit, le buzzer sonne en continu. Vous pouvez appuyer sur n'importe quel bouton pour le mettre en sourdine.

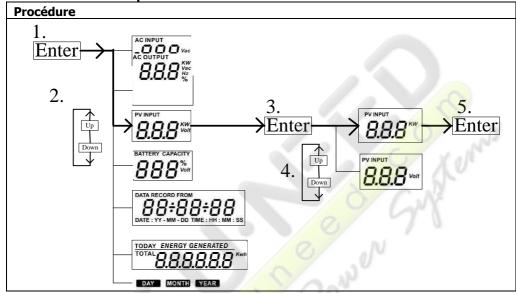
12-4 Fonctionnement du menu de requête

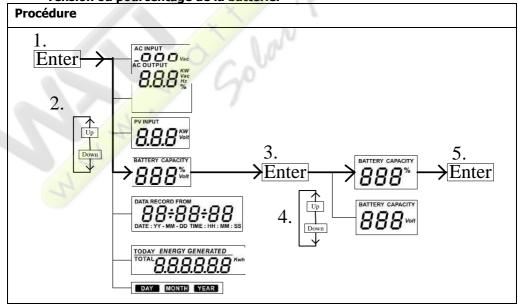

L'affichage indique le contenu actuel qui a été réglé. Le contenu affiché peut être modifié dans le menu de requête via les boutons. Appuyez sur le bouton 'Entrée' pour accéder au menu de la requête. Il existe sept sélections de requêtes:

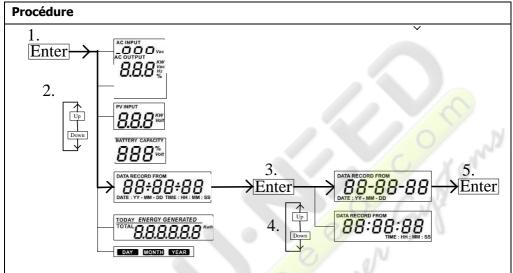
- Tension d'entrée ou fréquence d'entrée AC
- Fréquence, tension, alimentation ou pourcentage de charge de la sortie CA
- Tension d'entrée ou puissance de l'entrée PV.
- Tension de la batterie ou pourcentage de capacité.
- Date et l'heure.
- Aujourd'hui ou l'énergie totale générée.
- Mode d'énergie de requête générée.

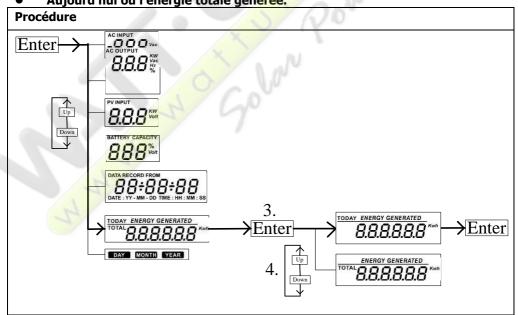


Procédure de réglage d'affichage

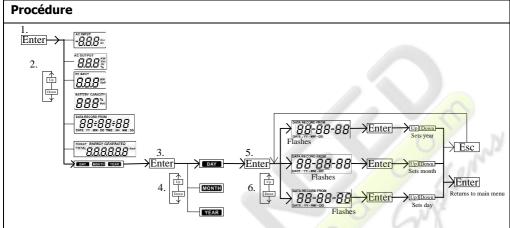

• Tension d'entrée ou fréquence d'entrée AC


Fréquence, tension, puissance ou pourcentage de sortie CA


Tension d'entrée ou puissance de l'entrée PV.

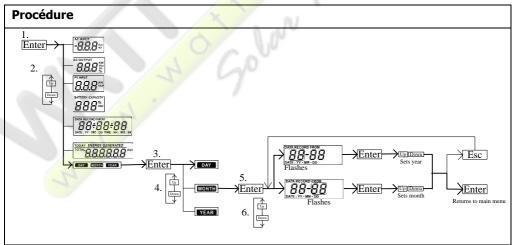

• Tension ou pourcentage de la batterie.

• Date et l'heure.



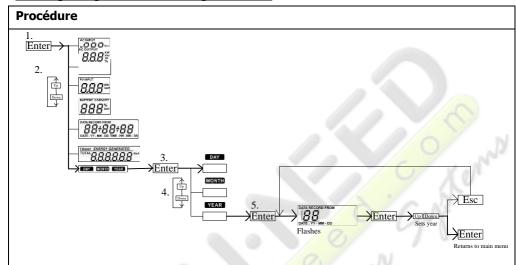
• Aujourd'hui ou l'énergie totale générée.

• Mode de requête d'énergie générée


Affichage de génération d'énergie du jour sélectionné

Affichage LCD:

Affichage de génération d'énergie du mois sélectionné

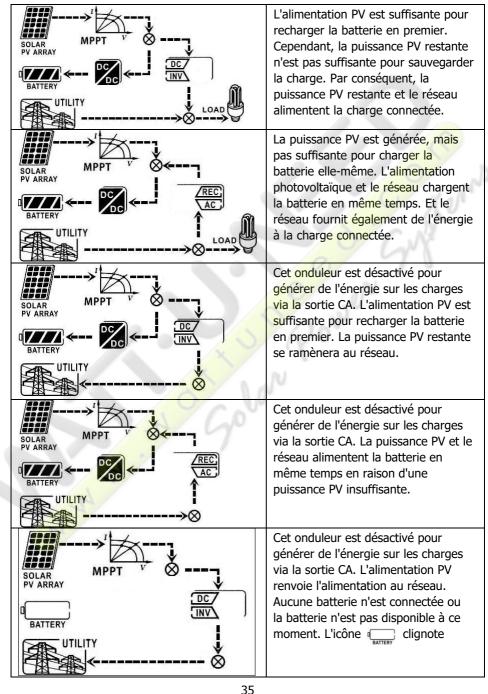


Affichage LCD:

Affichage de génération d'énergie de l'année sélectionnée

Affichage LCD:

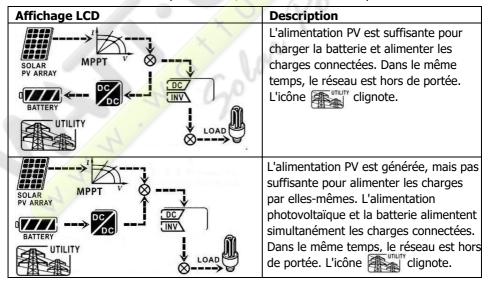
12-5. Mode de fonctionnement et affichage

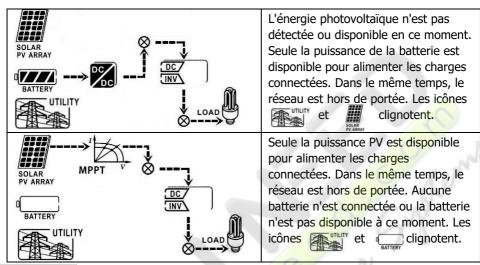

Vous trouverez ci-dessous uniquement un écran LCD pour la mise en Grid-Tie avec backup (I). Si vous devez connaître un autre mode de fonctionnement avec un écran LCD, vérifiez avec le programme d'installation.

Mode Onduleur avec réseau connecté

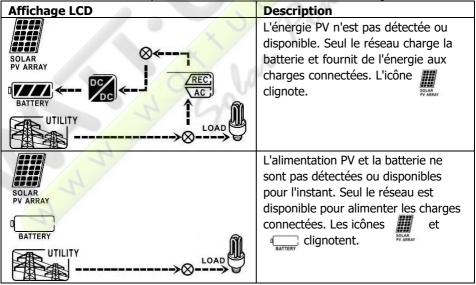
Cet onduleur est connecté au réseau et fonctionne avec l'opération DC / INV.

Affichage LCD	Description
SOLAR MPPT V S	L'alimentation photovoltaïque est suffisante pour charger la batterie, fournir de l'énergie sur les charges et ensuite passer eu réseau.





Mode Onduleur sans réseau connecté


Cet onduleur fonctionne avec l'opération DC / INV et ne se connecte pas au réseau.

Mode bypass

L'onduleur fonctionne sans l'opération DC / INV et se connecte aux charges.

Mode veille :

L'onduleur fonctionne sans l'opération DC / INV et la charge est connectée.

Affichage LCD	Description
SOLAR MPPT V S SOLAR PV ARRAY UTILITY	Le réseau est hors de portée. Cet onduleur est désactivé sur la sortie CA ou même la sortie CA est activée, mais une erreur se produit sur la sortie CA. Seule la puissance PV est suffisante pour charger la batterie. L'icône
SOLAR PV ARRAY UTILITY UTILITY	Cet onduleur est désactivé pour générer de l'énergie sur les charges via la sortie CA. L'énergie photovoltaïque n'est pas détectée ou disponible en ce moment. Seul le réseau est disponible pour charger la batterie. L'icône clignote.
SOLAR PV ARRAY UTILITY	Cet onduleur est désactivé pour générer de l'énergie sur les charges via un connecteur de sortie CA. L'alimentation PV et le réseau ne sont pas détectés ou disponibles en ce moment. Trois icônes clignotent.

13. Gestion de la charge

Tension de charge	Valeur par défaut Note	
Courant de charge maximal	25A Il peut être ajusté via un logiciel de 5Amp à 25Amp.	
Tension de charge flottante (par défaut)	54.0 Vdc	Il peut être ajusté via un logiciel de 50 Vac à 58 Vdc.
Tension de charge maximale d'absorption (par défaut)	56.0 Vdc	Il peut être ajusté via un logiciel de 50 Vac à 58 Vdc.
Protection contre les surcharges de batterie	60.0 Vdc	Cette valeur est de 2 Vcc supérieure à la tension de charge maximale.
Processus de chargement basé	U	OCN
sur le réglage par défaut.	Bulk Voltage Float Voltage	
3 étapes:		0
Première - la tension de charge maximale		Bulk Absorption Floating
augmente à 56V;		time → time
La deuxième tension de charge se	X	
maintient à 56 V jusqu'à ce que le courant	1 A A	
de charge soit réduit à 5 ampères;		
Troisième - aller à la charge flottante à		time
54V.		

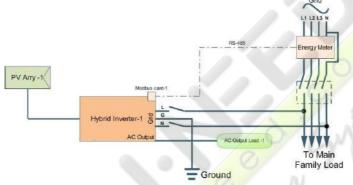
Cet onduleur peut se connecter aux types de batteries : batterie à l'acide plomb scellé, batterie ventilée et batterie Gel. Vous trouverez ci-dessous une tension de charge en vrac et une table de tension de charge flottante basée sur différents types de batteries.

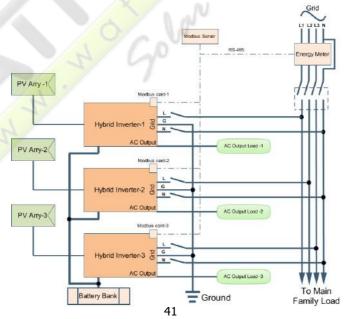
Type de batterie	Tension de charge en	Tension de charge flottante
	vrac	recommandée
Batterie scellée au plomb acide	56	53.6 V
AGM/Gel battery	56.4	54.0 V

Si vous utilisez une batterie scellée au plomb acide, configurez le courant de charge maximum selon la formule ci-dessous:

Le courant de charge maximum = Capacité de la batterie (Ah) x 0,2

Par exemple, si vous utilisez une batterie de 125 Ah, le courant de charge maximum est de 125 x 0.2 = 25 (A). Utilisez au moins 25Ah de batterie car la valeur minimale réglable du courant de charge maximum est de 5A. Si vous utilisez AGM / Gel ou d'autres types de batterie, veuillez consulter le programme d'installation pour les détails.




14. Applications avec Energy Meter

Avec la carte Modbus II et le compteur d'énergie, on peut facilement intégrer l'onduleur hybride dans le système ménager existant. Pour plus de détails, reportez-vous au manuel de la carte Modbus II.

 Pour une application onduleur unique: équipé de la carte Modbus II, l'onduleur hybride est connecté au compteur d'énergie avec un port de communication RS485. Il s'agit d'organiser une auto-consommation via la carte Modbus pour contrôler la génération d'énergie et la charge de la batterie.

2) Pour l'application à trois inverseurs: équipé de la carte Modbus II, trois onduleurs hybrides sont connectés au compteur d'énergie avec port de communication RS485. En tant que centre de contrôle, le serveur Modbus contrôlera la génération d'énergie et la charge de la batterie de trois onduleurs via la carte Modbus pour une consommation autonome réussie.

15. Entretien et nettoyage

Vérifiez les points suivants pour assurer le bon fonctionnement du système solaire entier à intervalles réguliers.

- Assurez-vous que tous les connecteurs de cet onduleur sont nettoyés tout le temps.
- Avant de nettoyer cet onduleur, veillez à éteindre tous les disjoncteurs (disjoncteur AC, disjoncteur batterie et disjoncteur PV DC).
- Nettoyez cet onduleur, pendant le bon moment de la journée, chaque fois qu'il est visiblement sale.
- Inspectez périodiquement le système pour vous assurer que tous les fils et les supports sont bien fixés en place.

AVERTISSEMENT : il n'y a pas de pièces remplaçables par l'utilisateur à l'intérieur de l'onduleur. N'essayez pas de réparer vous-même l'unité.

Maintenance de la batterie

- L'entretien des batteries doit être effectué ou supervisé par du personnel averti des batteries et des précautions requises.
- Lors du remplacement des batteries, remplacez le même type et le même nombre de batteries ou de parc de batteries.
- Les précautions suivantes doivent être respectées lorsque vous travaillez sur des batteries:
 - a) Enlevez les montres, les anneaux ou d'autres objets métalliques.
 - b) Utilisez des outils avec des poignées isolées.
 - c) Portez des gants et des bottes en caoutchouc.
 - d) Ne posez pas d'outils ou de pièces métalliques sur les batteries.
 - e) Débranchez la source de charge avant de brancher ou de débrancher les bornes de la batterie.
 - f) Déterminez si la batterie est mise à la terre par inadvertance. En cas de mise à la terre par inadvertance, retirez la source du sol. Le contact avec une partie d'une batterie mise à la terre peut provoquer un choc électrique. La probabilité d'un tel choc peut être réduite si de tels motifs sont supprimés lors de l'installation et de la maintenance (applicables à l'équipement et aux fournitures de batterie à distance n'ayant pas de circuit d'alimentation mis à la terre).

ATTENTION: une batterie peut présenter un risque de choc électrique et un courant de court-circuit élevé.

ATTENTION: Ne jetez pas les piles dans un feu. Les batteries peuvent exploser.

ATTENTION: Ne pas ouvrir ou mutiler les piles. L'électrolyte rejeté est dangereux pour la peau et les yeux. Cela peut être toxique.

16. Dépannage

Lorsqu'aucune information n'est affichée sur l'écran LCD, vérifiez si la connexion du module PV est correctement connectée.

REMARQUE: les informations d'avertissement et de défaut peuvent être enregistrées par un logiciel de surveillance à distance.

16-1. Liste d'avertissement

Lorsqu'une situation d'avertissement se produit, l'icône clignotera et la zone du code d'erreur affichera les mots-clés "WR". Vous pouvez vérifier le logiciel pour les situations d'alerte détaillées. Veuillez contacter votre installateur lorsque vous avez des situations d'avertissement décrites ci-dessous.

Avertissement	Icône (clignote)	Description
CPU effectue la correction automatique des signaux AD.	<u>(Clighote)</u>	L'ajustement de l'échantillonnage est en cours dans DSP.
Échec de l'enregistrement de données.	\wedge	La mémoire flash échoue.
L'entrée PV est perdue.	\triangle	La tension d'entrée PV est hors de portée.
La tension d'entrée PV est faib	€ <u></u>	La tension PV d'entrée est trop basse pour déclencher l'onduleur.
Îlot électrique	\wedge	La condition Islanding est détectée.
Une erreur s'est produite lors de l'initialisation de la CPU	\triangle	L'initialisation a échoué dans la CPU lorsque l'onduleur est allumé.
La tension du réseau électrique dépasse le seuil supérieur		La tension du réseau a dépassé la limite la plus élevée.
La tension du réseau électrique tombe en dessous du seuil inférieur		La tension du réseau dépasse la limite la plus basse.
La fréquence du réseau électrique dépasse le seuil supérieur		La fréquence du réseau a dépassé la limite la plus élevée.
La fréquence du réseau électrique est inférieure au seuil inférieur	\triangle	La fréquence de la grille dépasse la limite la plus basse.
La tension moyenne connectée au réseau électrique dépasse le seuil maximal	\triangle	La tension d'alimentation moyenne dépasse la limite supérieure
Déconnexion du réseau émergente	\triangle	Le réseau est anormale.
La tension de la batterie est trop faible.	\triangle	La tension de la batterie est inférieure à 42 V.
Batterie faible	\triangle	La tension de la batterie est inférieure à 25% de la capacité de la batterie ou la tension de la batterie est inférieure à 44V.
La batterie est déconnectée.	\triangle	La batterie n'est pas détectée.
Fin de la décharge de la batterie.	\triangle	Faible tension hors tension. La tension de la batterie est inférieure à 42 V. Cette batterie est chargée maintenant et ne parvient pas encore à 50V.

Avertissement	Icône (clignote)	Description
Surcharge	\triangle	Surcharge
Alarme de surchauffe	\triangle	Température excessive
Pas de masse électrique	\triangle	Perte au sol

16-2. Codes de référence des pannes

En cas de panne, l'icône **ERROR** clignotera en rappel. Voir ci-dessous les codes d'erreur à des fins de référence.

	Situation	ái d		
Code d'erreur	Événement de faute	Icône (clignote)		Solution
01	La tension du bus CC dépasse le seuil supérieur	ERROR	1.	Débr <mark>anchez d</mark> 'abord le disjoncteur AC.
02	La tension du bus CC tombe en dessous du seuil inférieur	ERROR		Ensuite, débranchez le disjoncteur DC.
03	Le démarrage progressif de la tension du bus CC est le délai d'attente	ERROR	2.	Jusqu'à ce que l'écran LCD s'arrête complètement,
04	Le démarrage progressif de l'onduleur est l'expiration du temps	ERROR		allumez le disjoncteur DC en premier. Il affichera
05	Un événement de surintensité de l'onduleur est détecté	ERROR	/4	"No Utility" dans l'écran LCD. Ensuite, allumez le
07	Un événement de défaillance de relais est détecté	ERROR		disjoncteur AC. Après 300 secondes, le système se
08	Le composant DC dans le courant de sortie dépasse le seuil supérieur	ERROR		connecte automatiquement au réseau
11	Le courant excessif sur l'entrée PV est détecté	ERROR	3.	Si le message d'erreur persiste, contactez votre
14	Le composant Inverter DC dépasse la plage admissible	ERROR		installateur.
16	Le CT actuel de fuite a échoué	ERROR		
06	Défaut de température excessive	ERROR	2.	La température interne est supérieure à la température spécifiée. Laissez l'onduleur à refroidir à température ambiante.
			3.	Si le message d'erreur persiste, contactez votre

			installateur.
09	La tension d'entrée PV dépasse le seuil supérieur	ERROR	 Vérifiez si la tension de circuit ouvert des modules PV est supérieure à 500VDC. Si la tension du circuit ouvert PV est inférieure à 500VDC et le message d'erreur persiste, contactez votre installateur.
10	La puissance auxiliaire * a échoué *L'alimentation auxiliaire signifie interrupteur d'alimentation électrique.	ERROR	 Éteignez l'onduleur. Ensuite, redémarrez l'onduleur. Si le message d'erreur persiste, contactez votre installateur.
13	Le courant de fuite dépasse la plage admissible La résistance d'isolement PV est trop faible	ERROR	 La tension au sol est trop élevée. Débranchez d'abord le disjoncteur AC, puis le disjoncteur DC. Vérifiez si la mise à la terre est correctement connectée après l'arrêt complet de l'écran LCD. Si la mise à la terre est correctement connectée, allumez le disjoncteur DC. Après avoir affiché "No Utility" dans l'écran LCD, allumez le disjoncteur AC. Après 300 secondes, le système se connecte automatiquement au réseau. Si le message d'erreur persiste, contactez votre installateur. Vérifiez si l'impédance entre les pôles positif et négatif sur le sol est supérieure à 1 MΩ.
15	Une différence s'est produite dans les lectures des contrôleurs	[ERROR]	 Si l'impédance est inférieure à 1 MΩ, contactez votre installateur. Débranchez d'abord le disjoncteur AC, puis

45

	principaux et secondaires			débranchez le disjoncteur DC.
17	La communication avec les	ERROR	2.	Une fois l'écran LCD
	contrôleurs principaux et			complètement désactivé,
	secondaires est interrompue			allumez le disjoncteur DC.
20	Panne du circuit de décharge	ERROR		Jusqu'à ce qu'il indique "No
21	Démarrage	ERROR		Utility" dans l'affichage LCD, allumez le disjoncteur. Après
	progressif dans la			300 secondes, le système se
	décharge de			connecte automatiquement au
	batterie échoue			réseau.
			3.	Si le message d'erreur
				persiste, contactez votre
				installateur.
22	La tension de charge est	ERROR	1.	Vérifiez si la connexion
	trop élevée			entre la batterie et
				l'onduleur est bien.
			2.	Assurez-vous que l'état de
				la batterie est correct.
			3.	Ensuite, redémarrez l'onduleur.
			4.	Si le message d'erreur
				persiste, contactez votre
				installateur.
23	Défaut de surcharge	ERROR	1.	Supprimer les charges
			20	excessives. Assurez-vous que
				les charges totalement
				connectées sont inférieures à la consommation maximale
		N		consommée par cet onduleur.
			2.	Ensuite, redémarrez
-				l'onduleur.
24	Batterie déconnectée	ERROR	1.	Vérifiez si le câble de la
				batterie est bien connecté.
	1 "		2.	Si le message d'erreur
	7,3			persiste, contactez votre
				installateur.
25	Le courant de l'onduleur est trop	ERROR		Supprimer les charges excessives.
	élevé pendant une longue période			Ensuite, redémarrez l'onduleur
26	Court-circuité sur la sortie	ERROR	1.	Éteignez l'onduleur.
	de l'onduleur		2.	Débranchez d'abord le
				disjoncteur AC. Ensuite,
				débranchez le disjoncteur
				DC, puis débranchez les
			_	charges.
			3.	Vérifiez si le circuit de
				chargement est correct.

				Après avoir supprimé l'erreur, allumez le disjoncteur DC PV et le disjoncteur.
			4. 5.	Allumez l'onduleur. Si le message d'erreur
			٥.	persiste, contactez votre installateur.
27	Défaut du ventilateur	ERROR	1.	Vérifiez si les ventilateurs fonctionnent bien.
			2.	
				correctement, fermez
				l'onduleur d'abord et ensuite, redémarrez-le.
			3.	Si les ventilateurs cessent de fonctionner ou si le message
				d'erreur persiste après le
			y	redémarrage, contactez votre installateur.
28	Défaut du capteur de	ERROR	1.	2 // 12 12
	courant OP			l'onduleur.
			2.	Redémarrez l'onduleur pour voir si c'est correct.
			3.	Si le message d'erreur
			ŽΑ	persiste, contactez
				votre installateur.
29	Défaillance du chargeur	ERROR	1.	Arrêtez complètement
		10"	2.	l'onduleur. Redémarrez l'onduleur
		.0	۷.	pour voir si c'est correct.
		7	3.	Si le message d'erreur
	//, ./			persiste, contactez
				votre installateur.
30	L'incompatibilité de la version entre la carte	ERROR	1.	Arrêtez complètement l'onduleur.
	contrôleur et la carte de		2.	Redémarrez l'onduleur
-3	puissance			pour voir si c'est correct.
			3.	Si le message d'erreur
				persiste, contactez
31	Connexion inverse des fils	(FRRAR)	1.	votre installateur. Arrêtez complètement
31	d'entrée et de sortie	ERROR	1.	l'onduleur.
	2 3.10 00 00 00 00 00		2.	Vérifiez si les fils du réseau
				sont connectés aux bornes
				de sortie CA.

47

3	S'il est mal connecté, connectez-le correctement. Et allumez l'onduleur à nouveau.
4	 Si le message d'erreur persiste, contactez votre installateur.

17. Spécifications

MODELE	2KW	3KW	3KW Plus	
PUISSANCE NOMINALE	2000 W	3000 W		
ENTREE PV (DC)				
Puissance DC maximale	2250 W	3200 W	4500 W	
Tension nominale DC	300 VDC	360 VDC		
Tension DC maximale	350 VDC	500	VDC	
Tension de démarrage / tension d'alimentation initiale	80 VDC / 120 VDC	116 VDC	/ 150 VDC	
Plage de tension MPP	150 VDC ~ 320 VDC	250 VDC	~ 450 VDC	
Courant d'entrée maximum	15 A	13 A	18 A	
Isc PV (maximum absolu)	15 A	13 A	18 A	
Courant de retour de l'onduleur max	0.4			
au réseau	0 A	3) A	
SORTIE RESEAU (AC)	() () () () () () () () () ()	/ s/	*	
Tension de sortie nominale	101/110/120/127 VAC	208/220/2	30/240 VAC	
Plage de tension de sortie	88 - 127 VAC	184 - 2	265 VAC	
Fréquence de sortie	47.5 ~ 51.5 Hz or	47.5 ~ 5	51.5 Hz or	
rrequence de sortie	57.5 ~ 61.5 Hz		60.5Hz	
Courant nominal de sortie	18 A*	13	3 A*	
Courant d'appel	23 A		7 A	
Courant de défaut de sortie maximum	69 A	69 A 51 A		
Protection maximale contre les surintensités	69 A 51 A		1 A	
Plage de facteur de puissance	0.9 lead – 0.9 lag			
ENTREE AC	A "			
Tension de démarrage de l'AC	60-70 VAC	120-1	40 VAC	
Tension de redémarrage automatique	85 VAC	180	VAC	
Plage de tension d'entrée acceptable	80-130 VAC/80-150VAC	170 - 2	280 VAC	
Fréquence nominale		/ 60 Hz		
Puissance d'entrée CA	2400VA/2400W		\/5100W	
Courant d'entrée CA max.	30 A	30 A	30 A	
Courant d'appel d'entrée	30 A	30 A	30 A	
SORTIE DE MODE BATTERIE (AC)				
Tension de sortie nominale	101/110/120/127 VAC 208/220/230/240 \			
Fréqu <mark>ence</mark> de sortie	50 Hz / 60 Hz (Détection automatique)			
Forme d'onde de sortie	Sinusoïde pure			
Puissance de sortie	2000VA/2000W 3000VA/3000V		4/3000W	
Courant de sortie	19.8A/18.2A/16.7A/15.7A 14.4A/13.6A/13A/			
Efficacité (DC à AC)	90% 92%			
BATTERIE & CHARGEUR				
Tension nominale DC	48 VDC			
Courant de décharge de la batterie maximale				
Courant de charge maximal	25 A			

GENERAL					
PHYSIQUE					
Dimension, D X W X H (mm)	480 x 438 x 117				
Poids net (kgs)	15.57				
INTERFACE					
Port de communication	RS-232/USB				
Slot intelligent	Cartes SNMP, Modbus et AS-400 en option disponibles				
ENVIRONNEMENT					
Classe de protection	Ī				
Indice de protection	IP20				
Humidité	0 ~ 90% RH (No condensing)				
Température d'utilisation	0 to 40°C				
Altitude	0 ~ 1000 m**				

^{*}Ce chiffre peut varier en fonction de la tension alternative différente.

^{**} Réduction de la puissance 1% toutes les 100 m lorsque l'altitude dépasse 1000 m.